
BServer

BServer ii

COLLABORATORS

TITLE :

BServer

ACTION NAME DATE SIGNATURE

WRITTEN BY January 31, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

BServer iii

Contents

1 BServer 1

1.1 Bserver documentation . 1

1.2 Disclaimer . 2

1.3 This is for real! . 2

1.4 What have we got? . 7

1.5 What do BServer need? . 8

1.6 Installing BServer . 8

1.7 About languages... 9

1.8 From CLI... 9

1.9 From Workbench... 10

1.10 ClientList file format . 11

1.11 More about clients . 12

1.12 How can I write a client? . 14

1.13 bitmap.library . 14

1.14 Once upon a day... what will the future bring . 15

1.15 Bugs :-(. 16

1.16 trouble . 16

1.17 That’s me!!! . 17

1.18 Autodocs . 17

1.19 What should a client do? . 19

1.20 opencommunication . 19

1.21 closecommunication . 19

1.22 sendclientmsg . 20

1.23 getservercommand . 20

1.24 displayid . 21

1.25 filterout . 21

1.26 getrect . 22

1.27 getbrivol . 22

1.28 rectdims . 23

1.29 spritesoff . 23

BServer iv

1.30 spriteson . 23

1.31 checkaa . 24

1.32 clonefrontmostscreen . 24

1.33 getdeeperfrontmostscreen . 24

1.34 darkestcolorindex . 25

1.35 brightestcolorindex . 26

1.36 open8svx . 26

1.37 close8svx . 26

1.38 play8svx . 27

1.39 playasynch8svx . 27

1.40 openmodule . 28

1.41 initmodule . 28

1.42 playmodule . 29

1.43 stopmodule . 30

1.44 freemodule . 30

1.45 decrunch30 . 31

1.46 getargstring . 31

1.47 getargint . 31

1.48 obtainanyfont . 32

BServer 1 / 32

Chapter 1

BServer

1.1 Bserver documentation

BServer version 1.5
Copyright © 1994, 1995 by Stefano Reksten

of 3AM - The Three Amigos !!!

CONTENTS OF THIS FILE:

·
DISCLAIMER
·

COPYRIGHT and CARDWARE
·

WHAT’S BSERVER?
·

WHAT DOES BSERVER NEED?
·

INSTALLING BSERVER
·

RUNNING BSERVER FROM CLI
·

USING BSERVER FROM WORKBENCH
·

CLIENTLIST
file format

·
MORE ABOUT CLIENTS
·

WRITING CLIENTS
·

Autodocs
for client.library

·
HISTORY AND FUTURE
·

KNOWN BUGS
·

TROUBLESHOOTING
·

BServer 2 / 32

HOW TO CONTACT THE AUTHOR

1.2 Disclaimer

DISCLAIMER

The author is *NOT* responsible for the suitability or accuracy of this
documentation and/or the program(s) it describes. Any damage directly or
indirectly caused by the use or misuse of this documentation and/or the
program(s) it describes is the sole responsibility of the user her/him self

1.3 This is for real!

COPYRIGHT

BServer v1.5, Copyright © 1994-95 by Stefano Reksten. All rights reserved.
This program may be distributed non-commercially only providing that the
executable, source code, documentation and copyright notices remain
unchanged and are included with the distribution.
The archive should contain the following directories/files:

BServer_v1.5/
Clients/

8SVX/
Balls.boing
ChunLi.scream
Clock.smp1
Clock.smp2
Lemming.OhNo!
Lemming.Youpy
Noise.snd
Zangief.laugh
Zangief.scream

ILBM/
DisplayIFF.BRS
PT_Frames.BRS

MISC/
Fortune.data

Balls
Balls.info
BlackScreen
BlackScreen.info
ChunLi
ChunLi.info
Clock
Clock.info
Curves
Curves.info
Dhalsim
Dhalsim.info
DisplayIFF

BServer 3 / 32

DisplayIFF.info
Eyes
Eyes.info
FadeScreen
FadeScreen.info
Fireworks
Fireworks.info
Fortune
Fortune.info
Hopalong
Hopalong.info
Invaders
Invaders.info
KillDMA
KillDMA.info
Lemming
Lemming.info
Life
Life.info
Lightning
Lightning.info
Majiks
Majiks.info
Mandelbrot
Mandelbrot.info
Maze
Maze.info
Melt
Melt.info
Multiline
Multiline.info
Noise
Noise.info
PacMan
PacMan.info
Plasma
Plasma.info
Poly
Poly.info
PT_Player
PT_Player.info
RandomDots
RandomDots.info
RastaParrot
RastaParrot.info
ScreenFall
ScreenFall.info
Shade
Shade.info
Shadows
Shadows.info
Shuffle
Shuffle.info
ShutScreen
ShutScreen.info
Spotlight
Spotlight.info

BServer 4 / 32

StarField
StarField.info
TicTacToe
TicTacToe.info
World
World.info
Worms
Worms.info
Zangief
Zangief.info

Catalogs/
Deutsch/

BServer.catalog
Français/

BServer.catalog
Italiano/

BServer.catalog
Norsk/

BServer.catalog
Svenska/

BServer.catalog
Libs/

bitmap.library

client.library
Sources/

clients/
ChunLi/

ChunLi.c
ChunLiData.c*

Dhalsim/
Dhalsim.c
DhalsimData.c*

Lemming/
Lemming.c
LemmingData.c*

PacMan/
PacMan.c
PacManData.c*

Shadows/
Shadows.c
ShadowsData.c*

World/
World.c
WorldData.c*
WorldData2.c*

Zangief/
Zangief.c
ZangiefData.c*

Balls.c
BlackScreen.c
Clock.c
Curves.c
DisplayIFF.c
Eyes.c
FadeScreen.c

BServer 5 / 32

Fireworks.c
Fortune.c
Generic.c
Hopalong.c
Invaders.c
KillDMA.c
Life.c
Lightning.c
Majiks.c
Mandelbrot.c
Maze.c
Melt.c
Multiline.c
Noise.c
Plasma.c
Poly.c
PT_Player.c
RandomDots.c
RastaParrot.c
ScreenFall.c
Shade.c
Shuffle.c
ShutScreen.c
Spotlight.c
StarField.c
TicTacToe.c
Worms.c

GFX/
ChunLi.lha
Dhalsim.lha
invaders.img
Lemming.lha
PacMan.lha
Shadows.lha
World.lha
Zangief.lha

include/
bitmap/

bitmap.h
bitmap_pragmas.h

client.h
client_pragmas.h
server.h

lib/
libsources/

bitmap.fd
bitmap_chunky.s
bitmap_library.c
client.fd
client_library.c
Decrunch30.o
PTPlay.s

client.lib
server/

catalogs/
BServer.cd
BServer_Dansk.ct

BServer 6 / 32

BServer_Deutsch.ct
BServer_Español.ct
BServer_Français.ct
BServer_Italiano.ct
BServer_Nederlands.ct
BServer_Norsk.ct
BServer_Portoguês.ct
BServer_Svenska.ct

askfiles.c
bserver.c
builtin_blanker.c
commodity.c
gadgets.c
makefile
modeid.c
startclients.c
window.c

BServer
BServer.info
ClientList
ClientList.info
Clients.info
Guide
Guide.info
Sources.info

BServer_v1.5.info

(*) These files are obtained with BtoC and are not included due to their
size.

Please note that the Sources directory comes in an archive.

ChunLi, Zangief and Dhalsim are Trademarks of CAPCOM,

Pacman is a Trademark of NAMCO,

Lemmings is a Trademark of DMA design,

RastaParrot is a Trademuck of Jamaikan of 3AM,

and Mandelbrot is a mathematician.

I did not know how to contact any of the first three in this list, so I
could not ask for any type of permission to release the related clients.
If any of them doesn’t like to see his creations in my clients, I will
remove the offending clients from this archive. Anyway I am not making any
money from this work, so I hope they won’t get upset 8-)

Of course Fred Fish is allowed to include this program in his library.
I know there are other people doing like Fred: they are allowed to distri-
bute BServer if the former conditions are respected.

This program is CARDWARE. If you use it you *MUST* send
me
a postcard from

your city/country. He who uses this program not having sent me a postcard
can be prosecuted by diarrhoea, data loss, expired driving licence. I aint

BServer 7 / 32

asking a lotta money from your pockets, just a stamp! :-)

1.4 What have we got?

WHAT IS BSERVER?

1) HOW IT WAS BORN
Well, here’s a program you can happily live without. It is a screen blanker
tha... hey! Wait! Don’t delete it immediately! It’s NOT a common blanker!
Infact, it is a SERVER for other blankers. It was born because of two main
reasons: First, I somewhat liked a similar program for another machine: the
well-known AfterFart® for FuckinTrash® computer family (IS it a computer?),
but, luckily, I do not own a similar machine. And second, I’m really bored
with the Blanker that comes along with Workbench. So, I thought to code a
blanker on my own. But I said, "Maybe other people want to build a blanker,
and maybe they’re not so good at coding or they’re just (like me) too lazy
to start reading Includes and AutoDocs. Or maybe they just don’t have them,
like my friend Luca Viola, who often asks me to lend them to him! >B-("
So I decided to program BServer. This program was made to help people build
their own screen blankers.

2) FEATURES (or: how does this program work)
Mainly, BServer does this: it blanks the screen if the user does not press
any key, move the mouse, insert a disk and the computer does not pop up any
requester. (Everybody says "ooooh" ;-) BServer is a modular screen blanker;
it does not check for CPU usage, it runs its clients at a -5 priority.

3) CLIENTS
The magic is the way the screen is blanked. Screen blanking can be done by
clients. What are they? A client is a program that having handshaked with
BServer is now blanking the screen and waiting BServer to tell him to stop.

Clients will be launched only when they are needed, and will quit when they
aren’t needed any more. This allows BServer to use a very small amount of
RAM. If a client fails another one will be choosen. This can proceed up to
Builtin Blanker.
If you run a client (double-clicking on its icon or like that) when BServer
is active, this will immediately blank the screen. Note that the client may
fail if it needs some

parameters
, or it may refer to some default ones.

A running client may be stopped after a while and a new one started instead
(of course this amount of time can be changed).

Clients make use of their custom library, client.library, to reduce their
size. Client.library keeps the code to play Protracker 3.00 modules & 8SVX
samples, clone screens, and of course handle the communication between the
clients and BServer.

There is a ModeID ListView gadget in BServer’s window containing all the
screenmodes you can use. By default this is hidden, but if you press on the
’zip’ gadget (that one near the window depth gadget) it will pop up.

BServer 8 / 32

Clients should use the selected one. (At least MY clients try to do that!)

1.5 What do BServer need?

WHAT DOES BSERVER NEED?

· Kickstart 2.04 should be enough (if it is not, LET ME KNOW!)

· Some clients to have fun with!
I enclosed 40 clients; it’s up to you to increase their number! If you
write some clients and you think they’re nice, stupid or crazy enough to
be enclosed in this collection just send them to

me
and I will put them

in future releases of this archive!

1.6 Installing BServer

--- ←↩

To install this program, you have to

1) extract the archive (you have already done that ;-)

2) delete the Sources archive, if you are not interested in it (e.g. you
are not a programmer or your programs are far better than mine ;-)

3) copy the drawer somewhere in your hard disk

4) Finally, the libraries part:
More than a friend of mine a) does not like to put many custom libraries
in the LIBS drawer or b) does not like to spread parts of a program in
various drawers or partitions (i.e. they did not like to put BServer,
or a mere copy of it, in the WBStartup, and the Catalogs in the LOCALE:
directory). So
· bitmap.library and client.library can be found in the Libs directory;
· BServer itself can now be specified as a tooltype.
You have to do the following:
· if you want to start BServer at boot time, put a

list
of clients in

the WBStartup drawer with BServer as default tool, with the DONOTWAIT
tool specified and PRECISE PATHS to search clients;

· install client.library and bitmap.library in LIBS:, or move them in
the Clients drawer, as you prefer;

· install BServer.catalog in your LOCALE: directory or leave it in the
BServer drawer, as you prefer.

BServer 9 / 32

1.7 About languages...

As I think it’s real fun and nice to have a program that speaks ←↩
my language

I enclosed some catalogs. If you see that your beloved language is not here
with the others, you can do the following actions:

· Get your language’s .ct file in the Sources/Catalogs directory.
· Fill in the entries.
· Send it back to

me
and I will compile and enclose it in the archive.

The following catalogs were compiled by:

Deutsch: Marcel GRONER (Ironcode) gronm@info.isbiel.ch

Française: Alan GUILLEVIC (Kangourou) guillevi@andromede.u-bourgogne.fr
25, Avenue du MAIL
21240 TALANT

Italiano: me! :-)

Norsk: Haavard N. JAKOBSEN (Tittentei) haa_jako@spirea.gih.no

Svenska: Richie OLSSON (richie) richie@medio.mh.se
http://www.medio.mh.se/anvandare/richie/richie.html

Many thanks ppl!

PS: I had to do some little retouchs to fit them in the few space I had,
and to add the new features every time I added a gadget...
So if there’s any error it’s my fault! :-)

1.8 From CLI...

RUNNING BSERVER FROM CLI

If you want to launch BServer from CLI you should pass him its arguments
according to its template that can of course be popped up with ’BServer ?’.
The template is: CX_PRIORITY/K/N,CX_POPUP/S,CX_HOTKEY/K,BLANKKEY/K,WLEFT/N,
WTOP/N,R=RANDOM/S,T=TIMEOUT/N/K,CT=CHANGETIME/N/K,D=DISPLAY/K,L=LIST/K,
B=BRIGHTNESS/K/N,V=VOLUME/K/N,NM=NOMOUSE/S,ND=NODISK/S

CX_HOTKEY: The combination of keys needed to pop up BServer’s window.
Defaults to <lalt b>.

Here’s a brief explanation of the non-standard voices:

BLANKKEY: A key that if pressed will tell BServer to start blanking.

BServer 10 / 32

(This is to enable the user to be able to blank at will,
without having to open BServer’s window.)
Default is <ctrl lalt b>.

WLEFT, WTOP: Screen relative coordinates for the upper left corner of
BServer’s window. If they are not present, the window will
be centered.

RANDOM: Determines if BServer should choose casually from its list
of clients. If it’s set then its builtin blanker will not
be choosen. (That is because it could be annoying to look
at a black screen having other nice progs drawing birds or
fishes or girls :-) etc...) I decided to provide you with
a client named "BlackScreen" that (guess?) pops up only a
black screen, just in case you can’t live without it. ;-)

TIMEOUT=SECONDS: Determines the amount of time that should pass before our
server starts its activity. BServer considers the 0 value
as inactivity (anyway blanking actions may be started with
the Blank gadget or with the blankkey).

CHANGETIME=SECONDS: Determines the amount of time before the active client
should be changed. 0 means no change. THIS WORKS ONLY IF
CLIENTS ARE CHOOSEN RANDOMLY

DISPLAY=ModeID: Determines the preferred display type; it should be based
upon the monitor and the language you use. Example: if you
use English use "DISPLAY=NTSC:Super-High Res Laced" but if
you use Italian, use "DISPLAY=NTSC:Super-Alta ris. inter."

LIST=filename: The name of the list containing desired clients. This file
will be loaded and kept in memory; within its entries the
server will choose a file and launch it. Default file is
ClientList. *Be sure* you provide a correct path within
clients’ names if they are not in the curent directory, or
BServer may not find them.

BRIGHTNESS=PERCENTAGE: Specifies the effective brightness of the screen
the user wants, from 0 (black) to 100 (normal). So if you
think these blankers have too shiny colors, just reduce
the brightness from here, not from your monitor.
FadeScreen handles a BRIGHTNESS argument overriding this.

VOLUME=PERCENTAGE: Specifies the volume level the user wants, from 0 (that
is silence) to 100 (normal). So if you think some blankers
are too noisy just reduce their volume from here, not from
your monitor or hi-fi or whatever you use.

NOMOUSE: Blanker won’t be stopped by mouse movements (but will stop
if a button is pressed or released).

NODISK: Blanker won’t be stopped by disk insertion or removal.

You can quit BServer by sending a CTRL_C to the program.

1.9 From Workbench...

USING BSERVER FROM WORKBENCH

Just double-click on its icon. You can specify the CLI options by writing
them in its ToolTypes. (See

RUNNING BSERVER FROM CLI
.)

The popkey is by default lalt-b (of course everything can be changed, just

BServer 11 / 32

modify the tooltypes of BServer). In the program’s interface you’ll find a
lot of gadgets that control:
· the time that must pass before any blanking action,
· the time that must pass before a client is changed with another one,
· the desired brightness and volume level (in percentage),
· the random gadget (controls wether clients should be choosen randomly, or
if the selected client should be used instead),

· the usual hide/quit gadget,
· the blank gadget (act immediately), has the same effect as he blankkey,
· the parameters gadget (useful to change parameters of the single clients

without having to quit and restart),
· the add gadget (to add some clients to the list),
· the remove gadget (to remove the selected client from the list),
· the listview containing all the possible blankers the program can run,
· the listview containing the possible screenmodes.
In the menues you can find an Events voice, in which you can select/exclude
the input events that would normally stop the blankers (mouse movements and
disk insertion/removal) ...I did that mainly because my mouse is nasty! :-)
You can specify BServer as the default tool for a clients’ list, this will
prevent BServer from searching "ClientList" and force it to use your list.
Clicking on BServer, holding shift-key and double-clicking on the icon has
the same effect (of course!).

1.10 ClientList file format

At launch time BServer will try to get a file called ClientList. This file
contains a serie of rows, each containing "<NAME>: <PROGRAM> <PARAMETERS>".
These stand for the name a client should be known under, the real name of
the program and the program’s parameters. To understand this check the rows
in ClientList related to MultiLine 8-)
<NAME>s will appear in the listview gadget containing the clients names.
They must not be longer than 50 characters. They are just symbolic names,
and may be different from the name of the client they refer to.
<PROGRAM>s will be called through SystemTagList(), they must not be longer
than 150 chars; these are the actual clients (external programs) that will
blank the screen.
<PARAMETERS> will be passed to programs after having opened a communication
channel with BServer. They must not be longer than 1024 chars. To help you
passing filenames (or anything containing spaces) as parameters, these can
be passed between a couple of <’> or <">. Parameters may be modified by
changing them in the parameters gadget, the one under the clients viewlist.

If while launching BServer you pass him another file as argument (i.e., if
you click once on BServer’s icon, hold shift-key pressed, then double-click
on another list’s icon) this file will override ClientList. So you can just
create more lists and for example put one of these in the WBStartup drawer.
(In that case remember to put aldo the DONOTWAIT tooltype in the icon.)
The same result can be achieved if you specify BServer as the default tool
of a clients list and then double-click on its icon.

BServer 12 / 32

1.11 More about clients

CLIENTS AND ECS

Clients check which chip set is currently installed so they can adapt their
screens to the preferred screen mode. So you can use all clients even with
ECS (but of course you can loose resolution, colors, etc... Get AGA!).
If a client cannot satisfy user’s screen mode (e.g. 16 colors superhires on
an ECS machine), it will adapt the resolution to a displayable one (in this
case hires). If it is still not possible to open the screen the client will
report his failure to BServer, that will invoke another one.

Some clients MAY work with ECS, it depends on the Display ID of the front-
most screen. These clients actually need to clone it but adding SOME MORE
bitplanes. Thus it may be possible that they can’t open the new screen.
Within these, Shadow and Spotlight need just one more bitplanes, so it is
possible for them to work under ECS.
Lemming, Zangief, World and Dhalsim need at least 5 bitplanes (they *WON’T*
won’t under ECS... unless the screen is a LORES, 4 bitplanes maximum...).
World is like them but has a CUSTOMSCREEN parameter that allows him to open
on a custom LORES screen.
If Multiline is asked to work on the frontmost screen it will try to open a
screen deeper for color flashing; if it is not possible it will use the
same depth of the screen.
DisplayIFF and Plasma do not depend on the frontmost screen, just on the
user’s preferred screen mode.

CLIENTS AND PARAMETERS

The following clients accept some parameters:

Balls:
You can specify BALLS number - min. 1, max 8 (defaults to 5).

Clock:
You can specify FONTNAME (with trailing ".font") and FONTHEIGHT. This will
be the font used by this blanker.

DisplayIFF:
You can specify a PICTURE parameter that will contain the name if the ILBM
that will be used during screen blanking (loaded only when needed). Please
note that HAM mode is not supported by the

bitmap.library
scaling routine.

If use a very large picture you will notice that it will be slow to scale
it so it will be slow to get back to Workbench :-)
The other parameter supported is MASK, boolean. That is, it have just to be
there. If specified your picture will be blitted using color 0 as transpar-
ent, *BUT* the last plane of the picture will be used for the mask, so if
you use this, maximum number of colours will be 128 for an AGA machine.
(If you use a non-AGA machine you’ll get the same 32 colors, 16 for hires.)
Defaults to the Clients/ILBM/DisplayIFF.BRS file.

FadeScreen:

BServer 13 / 32

This one accepts a BRIGHTNESS value overriding the one passed by BServer
(the reason of this is easy to explain: a Brightness value of 100 passed by
BServer would not blank at all... :-) and a DELAY for color fading that
ranges from 0 to 100.

Fortune:
You can specify FONTNAME and FONTHEIGHT (see Clock). With TEXT you specify
the text that will be printed. With FILE you specify where to retrieve the
data. (Defaults to MISC/Fortune.data.) Data must be plain ascii text with
cookies separed by ‘¤’ (ASCII 164). You can specify up to 10 text lines
using a ’#’ as a line separator. The program will check if every line fits
in the screen, otherwise it will split them. Eventually in this process
you could loose the lower lines.
If you specify a SCROLL parameter you’ll get an unique line scrolling thru’
the screen instead.

Mandelbrot:
You can specify the XRES and YRES of the rectangle (they will be cut to the
screen’s dimensions if required) and MAXITERS, the maximum number of iter-
ations to go before drawing a ’black’ pixel. Higher the number more precise
will be the final result, but slower to achieve it. Standard value is 32.

MultiLine:
You can specify the number of GROUPS of lines (limited only by memory, but
a high number will slow down the system) and the "tail"’s length (1 to 40,
default 30); you can set XSIMM-etry and YSIMM-etry or XYSIMM-etry just by
inserting these parameters (XYSIMM excludes the others).
Lines can be rendered in the frontmost screen instead of a custom one by
specifying a FRONTMOSTSCREEN parameter.

PT_Player:
You must specify a Protracker3.0 module name. You may specify a FILE (an
IFF ILBM) composed of two or more frames, each of the same size of the
others, all put together to form a line. From this brush PT_Player will cut
the frames to render its animation. In this case you must specify also the
number of FRAMES (defaults to 6 frames found in Clients/ILBM/PT__Frames.BRS)
and of VFRAMES (defaults to 1, it’s the number of different lines of anim).
E.g. suppose you have a picture like this:

+----------+----------+----------+----------+
| frame1-1 | frame1-2 | frame1-3 | frame1-4 |
+----------+----------+----------+----------+
| frame2-1 | frame2-2 | frame2-3 | frame2-4 |
+----------+----------+----------+----------+
| frame3-1 | frame3-2 | frame3-3 | frame3-4 |
+----------+----------+----------+----------+

In this case you have FRAMES=4 and VFRAMES=3.
VFRAMES are considered cyclical (i.e. they must be between 1 and 4, if they
are less than 4 (1 vframe per voice) they will be repeated).
Remember frames are of the same size and not separed in any way.

RandomDots:
You can specify the SIZE of the small squares, from 1 to 32.

Shuffle:
You can specify a number of slices between 2 and 5; the higher this number
the higher the squares’ number the frontmost screen will be divided into.

BServer 14 / 32

World:
If you put CUSTOMSCREEN it will open in a custom screen instead of the
frontmost one.

1.12 How can I write a client?

WRITING CLIENTS

If you decide to write a client you should not worry too much about how to
handshake with BServer etc., (all the routines are included in client.lib)
but eventually you MUST tell the server you could not perform the required
blanking actions (e.g. could not open a screen for low memory conditions).
Check if the machine you’re running on has got AGA or not, and adapt to it.
Respect the user’s preferred screenmode. There are some standard sequences
of commands in my sources to do that, you can use them (check expecially
Sources/Clients/Generic.c).

I have included with the distribution the files needed to write a client:
client.h (to be included within a client source) and client.lib (to link
with the object). You can also look at a general client structure in one of
my clients, like StarField.c, BlackScreen.c, etc.
Read also the

included autodocs
to use client.library properly.

Many of my clients use
bitmap.library
to reduce their size.

The following clients have different authors:
Mandelbrot, Plasma, Hopalong, Life: Luca Viola and me.
RastaParrot: the concept is Copyright © by Massimo Capanni, coding by me.
KillDMA: From an idea of Gianluca Marcoccia... It’s USELESS! :-) Maybe I

should remove it from this archive...
The remaining: all by me.

1.13 bitmap.library

bitmap.library (currently version 1.4) is Copyright © 1994-1995 by me,
that is Stefano Reksten, and it’s FREEWARE. You are free to use it in your
programs, but I retain the rights on it.

client.lib is useless if not used for BServer clients! :-)
Well, maybe some routines can be freely copied in other programs...

BServer 15 / 32

1.14 Once upon a day... what will the future bring

HISTORY:

May 5, 1994 : V1.0 - First release (alpha).

May 27, 1994 : V1.1 - ClientList and DisplayID were added (thanks must go
to Luca Viola for the idea), linking libraries were
debugged and transformed to shared to reduce clients’
size (client.library and bitmap.library).

Nov 25, 1994 : V1.2 - Some bugs removed (thanks to Enforcer, SegTracker and
FindHit!). Clients will be launched when needed, not
at start time. -> All clients rewritten (shorter!),
some BServer routines re-made from scratch.

Nov 27, 1994: "Line" and "KillDMA" added.
Nov 29, 1994: "Clock" added.
Jan 8, 1995: Removed a bug in bitmap.library; Mandelbrot,Fireworks

and Balls reworked.
Jan 18, 1995: CTRL-C added.

(V1.1 and V1.2 were internal releases - just ß-tests)

Jan 20, 1995: V1.3 - Localized and made SMALLER than ever before!
"ScreenFall" and "Mandel881" added.

Jan 21, 1995: Locale + Font adaptive.
Jan 23, 1995: "Shade" added.
Jan 24, 1995: Brightness added, "active" gadget removed (useless!).
Jan 29, 1995: Some clients were made aware of AGA/non-AGA machines.
Jan 30, 1995: A bug concerning TimeOut gadget removed.
Jan 31, 1995: Menues added. Now InputEvents can be "filtered" out.
Feb 6, 1995: Bug preventing BServer to work under 2.0 fixed.
Mar 6, 1995: Empty lines in client’s list won’t appear any more.
Mar 8, 1995: Added "Hopalong"; improved "Life".
Mar 9, 1995: Added "Plasma". (Thanks to Luca Viola for the plasma

source, but as ALWAYS >I< had to interface it! B-)
Mar 17, 1995: Removed a bug preventing another client from starting

after first one failed.

Mar 20, 1995: V1.4 - BServer can be a default tool; archive reworked.
Mar 22, 1995: A bug in askfiles.c removed.
Apr 11, 1995: A bug in the listview removed; "Text", "Multiline"

and "Eyes" added.
Apr 11, 1995: "SpecuLine" and "ScrLine" added. Well I really LOVE

lines ;-)
Apr 26, 1995: "Shuffle", "Noise" and "Majiks" added.
Apr 27, 1995: 8SVX support added. "TicTacToe" and "Worms" added.
Apr 28, 1995: "Lightning" added. Size of many clients reduced.
Apr 29, 1995: Added PlayAsynch8SVX() to client.library.

Autodocs for client.library moved in this guide.
Apr 30, 1995: A bug in random clients’ selection removed.

"Curves" added.
May 7, 1995: "Scroller" added.
May 8, 1995: "Spotlight" added. Shutscreen reworked.
Jun 6, 1995: "World" added.
Jun 9, 1995: "Lemming" added.

BServer 16 / 32

Jun 15, 1995: "Hopalong881" added (well, just recompiled ;)
Enough stack given to Mandel881, to make it work! :-(

Jul 2, 1995: V1.5 - QuadLine, SpecuLine, Line and ScrLine removed...
Don’t worry, they are emulated via MultiLine :-)
Mandel881 and Hopalong881 removed, Mandelbrot and
Hopalong will check for 68881/68882/68040.

->Parameters passing via ClientList instead of tooltype
reading in clients, parameters gadget added.

Jul 25, 1995: Change time gadget added.
Sep 6, 1995: All the icons support the NewIcon package by Nicola

Salmoria. Blank key handling improved.
Sep 23, 1995: Protracker 3.0 module support and "PT_Player" added.

Added hotkey to blank immediately.
Oct 21, 1995: "RandomDots" and "Invaders" added. "Majiks" enhanced.
Oct 23, 1995: "Fortune" added (Text and Scroller absorbed in it).
Nov 5, 1995: "Melt" and "Maze" added.

TO DO:

· Some other nice clients: Aquarium, Flying Things (Toilets, Toasters,

RastaParrot, ZioPanubio®...), 3D starfield, Swarm, Rain, Tetris,
Bubble Bobble, FracTunnel, 3D lines (configurable), Asteroids...

· Realize your ideas! (If it’s not too difficult ;-)

1.15 Bugs :-(

KNOWN BUGS:

PT_Player does not check if it is passed a proper Protracker3.0 module
(just checks for ’M.K.’). This may trash your memory.

I fixed all the bugs I’ve found or that have been reported.

I don’t exclude there can be some other bugs left. *BUT* you have also the
sources. So please, before writing me... if you can, check out what was it!
This is only a CARDWARE program... And as I have NEVER received a postcard
from anywhere yet for this program... I won’t correct any bug! >:-þ
OK, if you just can’t find what the error is, or have some brilliant ideas
or want to flame me, report something else, etc, etc... write

me
!

1.16 trouble

· T:After having extracted the archive and dragged it anywhere, BServer runs
but the clients don’t.

BServer 17 / 32

S:Remember to copy the libraries in LIBS: (or in the Clients’) directory.

· T:If I launch some clients from CLI, they don’t blank!
S:If the clients need any parameter, no way! You have to pass their parms

through BServer’s GUI.

· T:I pass a file as a parameter but the blanker won’t accept it!
S:If the file’s name contains some spaces, you can pass it between <’> or

<">. Example: "Data:Modules:mod.my preferred mod" or ’Data:mod.a b c d’

· T:There are not many clients!
S:Why don’t you make some? :-)

· T:BServer doesn’t run under my PC clone with windows etc.
S:Get a life.

1.17 That’s me!!!

HOW TO CONTACT THE AUTHOR:

You can E-mail your messages (or clients!) at this address:

rekststef@unisi.it

or snail mail to:

Stefano Reksten c/o Naimi,
viale Cavour, 40
53100 Siena
Italy

Have fun!!!

1.18 Autodocs

Autodocs for client.library
or

how to write a client

OVERVIEW
Here’s the complete documentation of the function you can use to

interact with your server. (Internal only functions are not documented.)

OpenCommunication

CloseCommunication

SendClientMsg

BServer 18 / 32

GetServerCommand

WaitServerCommand

DISPLAYID

FILTEROUT

GET...RECT

GETBRIGHTNESS

GETVOLUME

RECTANGLEWIDTH

RECTANGLEHEIGHT

SpritesOff

SpritesOn

CheckAA

CloneFrontmostScreen

GetDeeperFrontmostScreen

DarkestColorIndex

BrightestColorIndex

Open8SVX

Close8SVX

Play8SVX

PlayAsynch8SVX

OpenModule

InitModule

PlayModule

StopModule

FreeModule

Decrunch30

GetArgString

GetArgInt

ObtainAnyFont

BServer 19 / 32

1.19 What should a client do?

What’s to do:

When blanking is needed, BServer will choose a client and launch it.
So when you are launched, it’s supposed you will blank the screen, or
at least do something that will change the screens colors in order to
save your monitor’s phosphors.
OpenCommunication() will return you a DisplayIDInformation structure.
In this structure you’ll find the user’s preferred display id, overscan
dimensions, a parameters line, etc. (Its name lasts just for historical
reasons, seeing all the things this structure sontains ;)
OpenCommunication() *MUST* be called *ONCE* in order to establish a
channel between your program and BServer, that will tell him when to
stop. If anything goes wrong with memory allocation or this kind of stuff
SendClientMsg(ACTION_FAILED) will tell BServer to run another client
from its list (or to use its builtin blanker). Check when to stop using
GetServerCommand() or WaitServerCommand(): when any input activity takes
place, BServer will issue you a COMMAND_QUIT. So long, you aren’t needed
anymore. Do your cleanup, CloseCommunication(<your DisplayIDInformation>)
and exit.
Have fun! :-)

1.20 opencommunication

NAME
OpenCommunication

SYNOPSIS
dinfo = OpenCommunication()

struct DisplayIDInformation * = OpenCommunication()

FUNCTION
Opens a connection between your blanker (client) and the server.
Opens client.library . ClientBase is kept in client.lib, so you do
not need to open it any more. client.library will be closed on exit.

RESULTS
A DisplayIDInformation if communication was opened, NULL otherwise.

SEE ALSO

CloseCommunication()

1.21 closecommunication

BServer 20 / 32

NAME
CloseCommunication

SYNOPSIS
CloseCommunication(dinfo)

void CloseCommunication(struct DisplayIDInformation *)

FUNCTION
Closes communication between your client and the server. Frees the
structure returned by OpenCommunication. Closes client.library.

SEE ALSO

OpenCommunication()

1.22 sendclientmsg

NAME
SendClientMsg

SYNOPSIS
success = SendClientMsg(action)

BOOL = SendClientMsg(ULONG)

FUNCTION
Sends a message to the server (waiting reply). Of course, your
client should already have opened a communication with the server.

INPUTS
action: an UBYTE describing the action you’re performing. This may be:

· ACTION_FAILED (You couldn’t start your blanking actions,
so you are telling the server to ask
another blanker.)

RETURNS
TRUE if message was received, FALSE otherwise.

SEE ALSO

OpenCommunication()

1.23 getservercommand

NAME
GetServerCommand, WaitServerCommand

SYNOPSIS
command = GetServerCommand()

BServer 21 / 32

command = WaitServerCommand()

UBYTE = GetServerCommand()
UBYTE = WaitServerCommand()

FUNCTION
It returns the command sent by the server. The difference between
the two functions is that GetServerCommand checks the communication
port searching for any message coming from the server, while
WaitServerCommand will make your program wait until a command
(different from COMMAND_IDLE) is received.
The server may send you these commands:
· COMMAND_IDLE: the CommunicationPort is empty. This one can be

obtained only with GetServerCommand.
· COMMAND_QUIT: the server is asking you to quit.
Note that GetServerCommand POLLS the port so don’t use it out of any
rendering (or something else) cycle. Use WaitServerCommand instead.

There is a macro, STILL_BLANKING, that checks if the server is stopping
us; an example of its usage may be:

while(STILL_BLANKING)
{
RenderSomething();
}

SEE ALSO
any client’s source

1.24 displayid

NAME
DISPLAYID

SYNOPSIS
DisplayID = DISPLAYID(dinfo)

ULONG = DISPLAYID(struct DisplayIDInformation *)

MACRO
This macro returns you an ULONG containing the screen mode choosen
by the user for a client.

1.25 filterout

NAME
FILTEROUT

SYNOPSIS
newDisplayID = FILTEROUT(oldDisplayID, flags_to_remove)

ULONG = FILTEROUT(ULONG, ULONG)

MACRO

BServer 22 / 32

This macro removes all the unwanted flags from a DisplayID, e.g.:
you are told to blank; the server sent you also the preferred
screenmode (stored in dinfo). You want to filter SUPERHIRES mode
and LACE flag but want a hires screen. You could pass as value
for SA_DisplayID this value:
FILTEROUT(DISPLAYID(dinfo) | HIRES, SUPERHIRES|LACE)

SEE ALSO

GetServerCommand(), WaitServerCommand()

1.26 getrect

NAME
GETSTANDARDRECT
GETMAXOSCANRECT
GETVIDEOOSCANRECT
GETTXTOSCANRECT
GETSTDOSCANRECT

SYNOPSIS
rectangle = GET...RECT(dinfo)

struct Rectangle * = GET...RECT(struct DisplayIDInformation *)

MACRO
These macro return the address of a Rectangle structure containing
a certain overscan value. (As ever, the DisplayIDInformation
structure was allocated by your server.)

1.27 getbrivol

NAME
GETBRIGHTNESS
GETVOLUME

SYNOPSIS
brightnes_level = GETBRIGHTNESS(dinfo)

volume_level = GETVOLUME(dinfo)

UBYTE = GETBRIGHTNESS(struct DisplayIDInformation)
UBYTE = GETVOLUME(struct DisplayIDInformation)

MACRO
These two macro return you the desired level of brightness and volume
the user wants to get. Of course you don’t have to respect them but in
general you should. A program that does not respect GETBRIGHTNESS is
FadeScreen (but it is due to its nature :-).
Thus you can do for example

bri = GETBRIGHTNESS(dinfo);

BServer 23 / 32

volume = GETVOLUME(dinfo);
/* ... */
LoadRGB4(vp, 1, 5*bri/100, 12*bri/100, 15*bri/100);
/* ... */
Play8SVX(my_sound, volume);
/* ... */

1.28 rectdims

NAME
RECTANGLEWIDTH
RECTANGLEHEIGHT

SYNOPSIS
width = RECTANGLEWIDTH(rect)

height = RECTANGLEHEIGHT(rect)

UWORD = RECTANGLEWIDTH(struct Rectangle *)
UWORD = RECTANGLEHEIGHT(struct Rectangle *)

MACRO
This macro returns the current width/height for a screen from a
Rectangle structure.

Example: OpenScreenTags(NULL,
SA_Width, RECTANGLEWIDTH(GETTXTOSCANRECT(dinfo)), ...

1.29 spritesoff

NAME
SpritesOff()

SYNOPSIS
SpritesOff()

FUNCTION
Disables sprite DMA, removes sprite from screen.
Remember that performing a ScreenToFront action (when doublebuffering)
or similar will activate sprite DMA again.

SEE ALSO

SpritesOn()
, Balls.c, any other client’s source

BUGS
Well sprites should remain deactivated...

1.30 spriteson

BServer 24 / 32

NAME
SpritesOn()

SYNOPSIS
SpritesOn()

FUNCTION
Enables sprite DMA.

SEE ALSO

SpritesOff()

1.31 checkaa

NAME
CheckAA()

SYNOPSIS
aa_chipset = CheckAA()

BOOL = CheckAA(void)

FUNCTION
Tells wether AA chipset is installed or not, and if you can use it
(that is, if you have kickstart 3.0+ installed). If this function
returns FALSE, you have to fall back to 2.0, or to quit. As a general
behaviour, a client should fall back to ECS.

1.32 clonefrontmostscreen

NAME
CloneFrontmostScreen()

SYNOPSIS
screen = CloneFrontmostScreen(brightness_level)

struct Screen * = CloneFrontmostScreen(UBYTE)

FUNCTION
Returns you a pointer to a Screen structure; this is a Screen that is
identical to the frontmost screen, although it is automatically put
to a Y=0 coordinate. It is up to you to free this screen when you’re
finished. Colors will be to a brightness_level percent of their original
brightness. Valid range is 0-100, although no check is made on that.

1.33 getdeeperfrontmostscreen

BServer 25 / 32

NAME
GetDeeperFrontmostScreen()

SYNOPSIS
scr = GetDeeperFrontmostsScreen(brightness_level, image_depth)

struct Screen * = GetDeeperFrontmostScreen(UBYTE, UBYTE)

FUNCTION
Returns you a pointer to a Screen structure; this Screen is different
from the original frontmost screen in terms of bitplane number (depth).
The image_depth referes to an image that the user wants to be printed
on the screen; thus (according to the fact that the screen and the image
may - and surely will - have different colors in term of RGB components
and number) the screen is deeper, it has MAX(image_depth,scr_depth) + 1
bitplanes, the last of those will be filled with 1’s. The lower and the
upper halfs of the colormap will be loaded respectively from color 0 and
from color (2<<scr_depth), with a color number that reflects that of the
previous frontmost screen. It’s up to the user to load properly the first
colors with those of the image (from color 1 to color 2<<image_depth-1).
This will produce a screen that looks like the previous but really has
the colors "shifted" to the upper half of the table. The image can be
now drawn using a cookie-cut function like BltMaskBitMapRastPort().

brightness_level is used to reduce the brightness of the original screen
that has been "cloned". Valid range is from 0 to 100, but no check is
made.

SEE ALSO

CloneFrontmostScreen()
, any source of a

client featuring animation.

1.34 darkestcolorindex

NAME
DarkestColorIndex()

SYNOPSIS
index = DarkestColorIndex(screen)
UBYTE = DarkestColorIndex(struct Screen *)

FUNCTION
Returns you the index (pen number) of the darkest color in this screen’s
colormap. As a technical information, his function is based on the lowest
sum of the squares of the single R, G, B components of the colors.

SEE ALSO

BrightestColorIndex()

BServer 26 / 32

1.35 brightestcolorindex

NAME
BrightestColorIndex()

SYNOPSIS
index = BrightestColorIndex(screen)
UBYTE = BrightestColorIndex(struct Screen *)

FUNCTION
Returns you the index (pen number) of the brightest color in this screen’s
colormap. As a technical information, his function is based on the highest
sum of the squares of the single R, G, B components of the colors.

SEE ALSO

DarkestColorIndex()

1.36 open8svx

NAME
Open8SVX()

SYNOPSIS
svx = Open8SVX(name)

Sound * = Open8SVX(char *)

FUNCTION
Loads an IFF-8SVX sample from disk and returns you a pointer to a Sound.
You actually don’t need to know how this works (well if you’re curious
you can check it in /include/server.h), you just need the pointer.
The 8SVX sample must be 1 octave wide and one shot only.

SEE ALSO

Close8SVX()
,
Play8SVX()
,
PlayAsynch8SVX()
,
GETVOLUME()

1.37 close8svx

NAME
Close8SVX()

SYNOPSIS
Close8SVX(svx)

BServer 27 / 32

void Close8SVX(Sound *)

FUNCTION
Frees all memory allocated for a Sound.

SEE ALSO

Open8SVX()
,
Play8SVX()
,
PlayAsynch8SVX()
,
GETVOLUME()

1.38 play8svx

NAME
Play8SVX()

SYNOPSIS
Play8SVX(svx, volume_percentage)

void Play8SVX(Sound *, UBYTE)

FUNCTION
Plays a Sound (a loaded 8SVX sample). It is safe to pass a NULL pointer
to this function. This function will fail if someone has allocated all
audio channels. This function will return only when the sample has been
completely played. If the sound can’t be played (because audio channels
have been allocated by someone else) this function will wait as if the
sound could be played.

SEE ALSO

Open8SVX()
,
Close8SVX()
,
PlayAsynch8SVX()
,
GETVOLUME()

1.39 playasynch8svx

NAME
PlayAsynch8SVX()

SYNOPSIS
PlayAsynch8SVX(svx, volume_percentage)

void PlayAsynch8SVX(Sound *, UBYTE)

BServer 28 / 32

FUNCTION
Plays a Sound (a loaded 8SVX sample). It is safe to pass a NULL pointer
to this function. This function will fail if someone has allocated all
audio channels. This function returns immediately.

SEE ALSO

Open8SVX()
,
Close8SVX()
,
Play8SVX()
,
GETVOLUME()

1.40 openmodule

NAME
OpenModule()

SYNOPSIS
module = OpenModule(filename)

Module * = OpenModule(char *)

FUNCTION
Loads from disk a music in protracker (’M.K.’) module format.
Also calls

InitModule()
.

BUGS
None known.

SEE ALSO

InitModule()
,
PlayModule()
,
StopModule()
,
FreeModule()

1.41 initmodule

NAME
InitModule()

SYNOPSIS

BServer 29 / 32

InitModule(module)
void InitModule(Module *)

FUNCTION
Prepares a module to be played. This is automatically called by

OpenModule()
, and it is meant to be called again to

reset the module to its beginning.
This function is safe to call with a (Module *) NULL parameter.

BUGS
None known.

SEE ALSO

OpenModule()
,
PlayModule()
,
StopModule()
,
FreeModule()

1.42 playmodule

NAME
PlayModule()

SYNOPSIS
PlayModule(module)

void PlayModule(Module *)

FUNCTION
Tries to start a module in background.
This function is safe to call with a (Module *) NULL parameter.
Uses Protracker 3.0 playroutine.

BUGS
None known.

SEE ALSO

OpenModule()
,
InitModule()
,
StopModule()
,
FreeModule()

BServer 30 / 32

1.43 stopmodule

NAME
StopModule()

SYNOPSIS
StopModule(module)

void StopModule(Module *)

FUNCTION
Stops a module that is being played. This function is called also by

FreeModule()
.

This function is safe to call with a (Module *) NULL parameter.

BUGS
None known.

SEE ALSO

OpenModule()
,
InitModule()
,
PlayModule()
,
FreeModule()

1.44 freemodule

NAME
FreeModule()

SYNOPSIS
FreeModule(module)

void FreeModule(Module *)

FUNCTION
Calls

StopModule()
, then releases memory associated to a module.

This function is safe to call with a (Module *) NULL parameter.

BUGS
None known.

SEE ALSO

OpenModule()
,
InitModule()
,

BServer 31 / 32

PlayModule()
,
StopModule()

1.45 decrunch30

NAME
Decrunch30

SYNOPSIS
result = Decrunch30(dest_ptr, compressed_data_ptr)

BOOL = Decrunch30(UWORD *, UBYTE *)

FUNCTION
Decrunches data compressed with BtoC 2.5’s BYTERUN2 or upper (a program
I made to cut frames... ;-)

1.46 getargstring

NAME
GetArgString

SYNOPSIS
position = GetArgString(parm_line, string, store_buffer)

char * = GetArgString(char *, char *, char *)

FUNCTION
Checks if ’string’ is contained in ’parm_line’. If it is found this
function copies the next parameter in store_buffer (if it is not NULL)
and returns a pointer to ’string’ in the original ’parm_line’.

The reason why the result is copied in a buffer and returned in a pointer
is to handle spaces. A message can begin with ’ or " (thus it MUST finish
with ’ or "), if this happens everything between the ’/"s will be copied
(also spaces). If a message is not limited by spaces it will end as soon
as a space is met.

Tipically parm_line is taken from the di_Args field of the
DisplayIDInformation structure.

SEE ALSO

GetArgInt

1.47 getargint

BServer 32 / 32

NAME
GetArgInt

SYNOPSIS
value = GetArgInt(parm_line, string)

char * = GetArgInt(char *, char *)

FUNCTION
Checks if ’string’ is contained in ’parm_line’. If it is found this
function returns the integer value of the following parameter.

Tipically parm_line is taken from the di_Args field of the
DisplayIDInformation structure.

SEE ALSO

GetArgString

1.48 obtainanyfont

NAME
ObtainAnyFont

SYNOPSIS
font = ObtainAnyFont(dinfo)

struct TextFont * = ObtainAnyFont(struct DisplayIDInformation *)

FUNCTION
Tries to open any font specified in the DisplayIDInformation; tipically it
contains the font specified for a certain client in the parameters gadget of
BServer’s main window. But if no font is specified it returns, in order,
diamond/20, times/24 or topaz/8. The application has to close the font when
finished.

	BServer
	Bserver documentation
	Disclaimer
	This is for real!
	What have we got?
	What do BServer need?
	Installing BServer
	About languages...
	From CLI...
	From Workbench...
	ClientList file format
	More about clients
	How can I write a client?
	bitmap.library
	Once upon a day... what will the future bring
	Bugs :-(
	trouble
	That's me!!!
	Autodocs
	What should a client do?
	opencommunication
	closecommunication
	sendclientmsg
	getservercommand
	displayid
	filterout
	getrect
	getbrivol
	rectdims
	spritesoff
	spriteson
	checkaa
	clonefrontmostscreen
	getdeeperfrontmostscreen
	darkestcolorindex
	brightestcolorindex
	open8svx
	close8svx
	play8svx
	playasynch8svx
	openmodule
	initmodule
	playmodule
	stopmodule
	freemodule
	decrunch30
	getargstring
	getargint
	obtainanyfont

